Global Parlor Tricks

Change the world with these geographic mapping algorithms.
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THE EARTH IS a three-dimensional spheroid that may be represented by drawing the outlines of the landmasses on the surface of a small sphere or globe. Globes, however, tend to be inconvenient to carry around. Flat pieces of paper that may be folded up are much more convenient. Unfortunately, it is impossible to flatten out a globe without stretching, compressing, twisting, tearing, or otherwise distorting it. The art of map making consists of devising schemes to transfer a drawing of the earth from a globe to a flat piece of paper while minimizing chosen types of distortion.  The results of these schemes are referred to as map projections. While the old fashioned method is to project a trans-parent globe’s map onto paper and trace the outlines, calculating a few equations and rotation matrices on your Amiga is a much faster and more accurate approach. To help you visualize the mathematical concepts, let’s discuss the tracing method first.

PROJECTIONS OVERVIEW

No one seems to be certain whether early mapmakers such as Mercator actually used a candle or lantern to project a map, but it is instructive to imagine how this would be done.  If you draw a map of the world on a glass globe, place a tiny light source at the center of the globe, put a paper cylinder around the globe with its axis aligned with the axis of the globe, then the image of the map on the globe is projected onto the paper cylinder. You could then use a pen to trace the projected image on the paper. Figure 1 illustrates the central perspective projection. The globe here is centered on latitude = 0.0 and longitude = -100.0 degrees. The outlines of major features of the world are displayed in dark gray on the globe and their projections onto the cylinder wrapped around the globe are displayed in lighter gray.
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Figure 1: A central perspective projection with the globe centered at 0.0 latitude, 100 longitude.

By cutting the paper cylinder along a line parallel to its axis, it can be flattened out into a rectangular piece of paper. The map that results from such a procedure is called a central-perspective cylindrical projection.

The central-perspective projection is a member of a family of projections called cylindrical projections because you project the globe onto a cylinder. If you place the cylinder over the globe at some odd angle (not aligned with the earth’s axis) the resulting map is known as an oblique projection. If the cylinder is aligned so that it is tangent to the north and south poles, the resulting map is known as a transverse projection.  Another family of map projections known as conical projections are created by using a paper cone instead of a cylinder. Imagine a paper cone being placed upon the glass globe like a hat and projecting and tracing the map upon it. The cone can then be cut along one side parallel to the axis. The result is a convenient, flat, paper map with distortions somewhat different than those created by cylindrical projections.  If you place a flat piece of paper tangent to the globe’s surface and place the light source at the center of the globe, the, resulting map is a gnomonic projection. If the light source is placed at the surface of the globe opposite the point of tangency of the paper and the globe, the resulting map is a stereographic projection. If the light source is placed opposite the point of tangency of the paper and the globe, and is located an infinite distance away, the resulting map is an orthographic projection. The orthographic projection shows the earth as it would appear from deep space. The gnomonic, stereographic, and orthographic projections are all azimuthal projections because the direction of a straight line drawn from the center of such a map to any other point on the map corresponds with the true direction or azimuth of that point.  Another type of projection is the azimuthal equidistant projection where the map provides the true azimuth and distance between the center of the map and any other point on the map. Such maps are not simple projections such as the ones previously mentioned. They cannot be produced by simple projection using a light source. These types of maps are still called “projections” but this term signifies a more general mathematical meaning of the word projection. The field of mathematics known as projective geometry defines this more general meaning.

There are many types of map projections that cannot be projected in a simple way by using a glass globe and a light source. Examples are: the Mercator conformal projection, the Kavraiskiy projection, the Miller cylindrical projection, the Sinusoidal projection, the Mollweide projection, and the Van der Grinten projection.

The Mercator projection is most closely related to the central-perspective cylindrical projection and is referred to as a cylindrical projection in most texts. In reality, it cannot be projected using a globe and a stationary light source. It is a mathematical projection specifically designed to force rhumb lines to be mapped as straight lines. A ship following a rhumb line never changes it’s heading. On the Mercator projection, a navigator can draw a straight line between where he is and where he wants to go, measure the angle, and use that as a constant heading. The trip takes a little longer because it is not a “great circle” route, but it is easy to steer. (Interestingly, if the navigator is not on a heading of due east or due west, and if he misses his target, and if he encounters no land, he eventually winds up at the north or South Pole! Following a constant heading is the same as following a spiral path known as a loxodromic spiral that terminates at a pole.) Many of the “mathematical” projections are generated by construction rules involving a straightedge and a compass.  It is relatively easy to construct the latitude and longitude lines in this way. Skilled mapmakers sometimes copy the contents from each latitude/longitude grid region from one type of projection to the corresponding latitude/longitude grid region of another type of projection and transform the shapes of the contents of these regions in their heads. If they are careful (and if the grid is small enough), they can transform, with reasonable accuracy, one type of map into another type of map in this manner.

In fact, as of the early 1980s, this is how National Geographic was producing their Van der Grinten maps. At that time I needed equations for the Van der Grinten projection. I checked all available references and found the straightedge and compass method but no equations. I called the Defense Mapping Agency, and they didn’t have the equations. I finally called National Geographic and found to my surprise that they were still using the straightedge and compass method. The equations I needed, however, could be derived from the straightedge and compass method. Time did not permit me to pursue the derivation. (Is it possible that these equations have still not been derived?)

Equations are known for most of the map projections in common use. These equations are relatively simple for projections centered at latitude = 0 and longitude = 0. The equations become very complex for projections centered on some other point.

MATHEMATICAL ROTATION OF THE GLOBE

When I began working on computer-generated maps in 1978 I applied some relatively simple rotation matrix methods to the task. I was rather surprised by the results. The rotation matrices eliminated most of the complexity of the map transformation equations. The simplest form of the Mercator projection equations arises when the map is centered on latitude = 0 and longitude = 0. Use of rotation matrices allows the globe to be rotated so that the desired center point of the map (say latitude = 35, longitude = 23) is transformed to latitude = 0 and longitude = 0. All other points on the map are transformed similarly. The new set of latitudes and longitudes may then be run through the simple Mercator projection equations to produce the map. It is possible to cover the entire range of possible oblique Mercator projections using this method.

The same is true for orthographic projections: The simplest form of the orthographic projection arises when the map is centered on latitude = 0 and longitude = 0. 

By using rotation matrices to transform the desired center point of the map to latitude = 0 and longitude = 0 and similarly transforming all of the other latitudes and longitudes to their new values, the simplest form of the orthographic projection equations may be used to plot the map. This allows north polar, south polar, and all oblique orthographic projections to be done with relative ease. In fact, the rotation matrices can be used to simplify equidistant azimuthal projections and indeed all other types of projections.

The other important result is that it is relatively easy to derive the inverse transform of the map. The reason you need the inverse transform is that you might want to place the cursor on the map and read the latitude and longitude directly from the screen. The inverse transform tells you how to get the latitude and longitude from the screen cursor coordinates. The usual textbook version of the oblique Mercator projection equations is rather intimidating. Deriving the inverse would be no fun. However, it is easy to derive the inverse transform of a set of rotation matrices. It is also easy to derive the inverse transform of the simple form of the Mercator projection equations. This makes it simple to find the latitude and longitude from the cursor position. It is similarly easy for the orthographic and equidistant azimuthal projections. (I have not tried other types of projections but would expect them to be also simplified.)

THREE-SPACE ROTATION OPERATIONS

Rather than derive and describe the rotation matrices (which could be its own article), we will simply examine what is necessary to rotate the globe. For convenience, we will work with a globe of radius = 1.0 and three-space Cartesian coordinates (x, y, z). We will also make five assumptions:

The origin of the (x, y, z) coordinate system is at the center of the globe; The z axis points to the north pole; The x axis points directly toward you, the observer, and the y axis, perpendicular to the other two axes, points to the right.  We will also use three-space spherical coordinates (r, theta, phi). Theta is the longitude in degrees, phi is the latitude in degrees, and r is the distance from the center of the sphere to the surface. In all of the following operations, r is defined to be 1.0. If we need to calculate distances on the earth’s surface, we may simply redefine r to be in kilometers or miles.

To rotate the globe, we perform the following steps:

1. Choose the latitude and longitude that will be in the center of the new map. Call this point (theta0, phi0). Let theta = theta0, and phi = phi0.

2. Convert the point (theta, phi) to a Cartesian vector, (x, y, z).  

3. Rotate the (x, y, z) vector through an angle of –theta0 degrees about the z-axis to obtain the (x’, y’, z’) vector.  

4. Rotate the (x’, y’, z’) vector through an angle of –phi0 degrees about the y-axis to obtain the (x”, y”, z”) vector. We have now rotated the vector (x, y, z) corresponding to the latitude and longitude of the center point of the map so that the vector has coordinates (1, 0, 0) and points directly toward you, the observer.

5. Apply the same conversion and rotation to all latitude/longitude pairs making up the drawing of the earth. This assigns new vectors that correspond to new latitude and longitude values to each point of the drawing. We can then easily obtain the new latitude and longitude values from these new vectors.

We have effectively reassigned latitudes and longitudes to all points on the surface of the globe to what they would have been if early map makers had chosen the point (theta0, phi0) as the “true center” of the globe instead of the point they chose (the one that is on the equator and a little to the left of Africa.) We can then use these new values in the simplest forms of the map transformation equations to produce maps of the earth centered on the point (theta0, phi0).  The first task is to convert a latitude/longitude pair from (r, theta, phi) form to (x, y, z) form. The equations needed:

Equation Set 1 
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 (where pi is 3.1415927...)

Now we have a vector, (x, y, z), from the center of the globe to the point on the surface of the globe specified by the latitude/longitude pair, (theta, phi). The next step is to rotate that vector about the z-axis through an angle of -theta0 degrees. We use the matrix equation:

Equation 2
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Next, to rotate this new vector about the y-axis through an angle of -phi0 degrees, we perform the matrix equation:

Equation 3
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The final phase is to map this new vector, (x”, y”, z”) via the appropriate map projection equations.

THE ORTHOGRAPHIC PROJECTION

For the orthographic projection, we simply plot the (y”, z”) values whenever the x” value is positive. (When the x” value is positive, the vector denotes a point on the front side of the world. Ordinarily we will not want the backside of the world showing through.) We may wish to multiply the (y”, z”) values by some constant, C (a magnification factor), because they are at most one unit long. For example, if the screen resolution is 700x700, you may wish to plot the values (600y”, 600z”). Most geographic map databases consist of a list of latitude and longitude pairs making up a line such as a coastline. There is usually an additional index number kept with each latitude and longitude pair that changes when you come to a new line. To draw a map, you move, using a non-drawing operation, to the first point of a new line and then draw to each successive point of the line until you reach a new index number. At that time, you move to the first point of this new line using a non-drawing operation, and continue the cycle. Figure 2 illustrates the orthographic projection obtained when the latitude and longitude of the map center point (phi0, theta0) are 45.0 and -100.0 degrees respectively.  
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Figure 2:  An orthographic projection with map center at (45,-100)

A south-polar projection, Figure 3 illustrates the orthographic projection obtained with a center point of latitude = -90.0, longitude = 0.0 degrees.
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Figure 3:  A south-polar orthographic projection.

THE MERCATOR PROJECTION

For the Mercator projection, we have:
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The xmerc” values are from -180 to + 180, and the ymerc” values are from -infinity to +infinity. Mercator projections are always truncated in the vertical (+ymerc” and -ymerc”) directions. Good software practice is to anticipate and eliminate the possibility of mathematical underflows and overflows. To do so, look at y” and x” before division (y”/x”) and then refuse to calculate or plot any extreme values. It is reasonable to limit the plotting region to be from -180 to 180 in the xmerc” direction and from -180 to 180 in the ymerc” direction. (In the software accompanying this article, the range in the ymerc” direction is restricted from -130 to +130 to compensate for the aspect ratio of the particular display screen used.) You may wish to multiply the (xmerc”, ymerc”) values by some magnification factor, C, to adjust the size of the map on the screen. The C*xmerc” and C*ymerc” values may then be plotted to produce a Mercator projection map.  

Figure 4 is a Mercator projection centered on latitude = 0.0, longitude = 0.0 degrees. This is the map with which you are probably most familiar.
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Figure 4:  The familiar 0-latitude, 0-longitude map.

An oblique Mercator projection, Figure 5 is a Mercator projection centered on latitude = 45.0, longitude = -100.0 degrees.
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Figure 5:  An oblique Mercator projection centered on latitude 45, longitude –100.

Known as a transverse Mercator projection, Figure 6 is a Mercator projection centered on latitude = 90.0, longitude = 0.0 degrees.
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Figure 6:  A transverse Mercator projection.

INVERTING THE TRANSFORMATION

If we wish to read out the latitude and longitude by using a cursor on the map on the screen, we need to be able to convert the screen (xmerc”, ymerc”) location back to the latitude and longitude values corresponding to the map point displayed. This is now relatively simple; we merely reverse each transformation.

We first compute the vector (x”, y”, z”) that corresponds to the cursor location. To do so for the Mercator projection, we first find the transformed latitude and longitude (theta”, phi”) from the screen coordinates (C*xmerc”, C*ymerc”): Divide out C leaving (xmerc”, ymerc”), and then calculate:
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Next compute the (x”, y”, z”) vector:
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So we now have (x”, y”, z”) corresponding to the cursor designated position on a Mercator projection.  

For the orthographic projection, the screen’s cursor read-out already provides (Cy”, Cz”). After dividing out C to leave (y”, z”), we must find x”. From simple three-space geometry we see that: 


[image: image15.wmf])

"

"

1

(

"

2

2

z

y

sqrt

x

-

-

=


So we now have (x”, y”, z”) corresponding to the cursor designated position on an orthographic projection.  From the (x”, y”, z”) vector obtained by either process, we can determine the latitude and longitude in original earth coordinates by the following process:

1. Reverse the rotation about the y-axis by rotating through an angle of +phi0 degrees:


[image: image16.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

"

"

"

)

180

0

cos(

0

)

180

0

sin(

0

1

0

)

180

0

sin(

0

)

180

0

cos(

'

'

'

z

y

x

phi

phi

pi

phi

pi

phi

z

y

x

p

p


2. Reverse the rotation about the z-axis by rotating through an angle of +theta0 degrees:
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The resulting (x, y, z) vector is the vector corresponding to the cursor-designated position in the original world coordinate system.

3. Determine the latitude and longitude with:
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PRACTICAL CONSIDERATIONS

In practice we can increase speed considerably by pre-multiplying, pre-computing, and storing the rotation matrices so that only simple multiplication operations are required for the rotations. This increases the speed considerably. The example C procedures in the accompanying disk’s Anderson drawer demonstrate this technique.

Note that we have not taken the oblateness of the earth into account. Viewed from a point over the equator in deep space, the outline of the earth appears to be an ellipse rather than a circle. Assuming that latitudes and longitudes are assigned to points on the surface of the earth to be the angles associated with a ray from the center of the earth, it is evident that certain map projections will have an error associated with this ellipticity. For example, the Mercator projection will be slightly incorrect with respect to latitude. Dutton’s Navigation & Piloting says:

“Since these variations from a truly spherical shape are so slight, for most navigational purposes the earth can be considered a sphere, and solutions of navigational problems based on this assumption are of practical accuracy. In the making of charts, however, consideration is given to the oblateness of the earth.”

To account for oblateness in the Mercator projection ymerc” value shown above simply add the correction term:
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   (Where E is the eccentricity of the earth)

DRAWING CIRCLES ON A MAP

Over ten years ago I devised a “trick” for drawing circles on the globe centered on any point so that the circles are accurately displayed (distorted) under any projection. The trick is to calculate the latitudes and longitudes of a circle of the appropriate radius centered on the North Pole. You then create a new set of simple rotation matrices to carry the North Pole to the desired center point of the circle on the map. The points of the circle are then run through this new rotation matrix. We run those results through the same rotation matrix and projection equations that the original map points were run through. When the results are plotted, you have a circle of the appropriate radius centered on the desired location.  The circle will be displayed and distorted appropriately for the particular map with which you are working.  To begin this process you first find the latitude of the circle you wish to map by applying a simple equation from high school geometry, S = R * phi. S is the length of an arc, R is the radius of a circle, and phi is the angle between the two radius vectors that define the arc. If we let R be the radius of the earth and S be the radius of the circle we wish to draw on the map, we can calculate the angle phi as: 

phi = S/R 

If we choose one of the radius vectors to be aligned with the north pole, we see that the latitude of the desired circle about the pole is 90- phi. To save this circle, we simply list and save the latitudes and longitudes of the points around the circle. The latitude is the same for all point pairs, i.e., 90- phi.  For the longitudes, we start at -180 and count up by any desired increment until reaching + 180.

Now we need to construct rotation matrices that will rotate the center of the circle (the north pole) to the desired center point of the circle on the map. We will use these rotation matrices to rotate the points of the circle to their correct latitude and longitude values (the values that they would have on an unrotated map.) Let’s assume that the circle is to be drawn centered on latitude = lat0 and longitude = lon0.  

As above, we first convert the latitude/longitude pair from (r, theta, phi) form to (x”, y”, z”) form. The equations are:

Equation Set 4 
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In this case, we want to rotate the point (r, 0, 90), the North Pole, to (r, lon0, phi0)

First, rotate (x”, y”, z”) about the y-axis through an angle of -(90-lat0) or (lat0-90) degrees. The matrix equation necessary:

Equation 5
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Next, rotate the new vector (x’, y’, z’) about the z-axis through an angle of +lon0 degrees. The matrix equation to perform this rotation is:  

Equation 6
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Now apply equations 4, 5, and 6 to each latitude/longitude pair representing the circle that we saved. The resulting (x, y, z) vectors are then transformed via the map projection equations 1 and 2 and plotted using either the Mercator projection equations or the orthographic projection equations as shown above.

Figure 7 shows circles of various centers and radii drawn accurately on an orthographic projection centered on latitude = 45.0, longitude = -100.0.
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Figure 7:  Various accurately drawn circles on an orthographic projection.

Figure 8 shows circles of various centers and radii drawn accurately on a Mercator projection centered on latitude = 45.0, longitude = -100.0. Note that on a Mercator projection, circles are always displayed as circles - they maintain their shape. This is due to the conformal or shape preserving property of the Mercator projection. The area of a displayed shape is distorted however so that a circle of given radius appears larger when it is further vertically from the map center.
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Figure 8:  Accurate circles with various centers and radii on an oblique Mercator projection.

WORLD MAP DATABASES

To create your own maps, you need latitude/longitude pairs. The best sources for these are map databases. Perhaps the most well-known world-map database is World DataBank II that was developed by the CIA presumably by digitizing satellite photos. World DataBank II contains nearly six million latitude/longitude pairs. Additional data accompanies each latitude/longitude pair - the line-segment number, the rank or type of data, and the number of points in the line segment. Plotting such data is a simple matter of transforming each latitude/longitude pair, lifting the pen whenever the line-segment number changes and leaving the pen down between successive points when the line-segment number remains the same. You could also change pen color whenever the rank changed. World DataBank II contains 27 ranks or categories of data. The types of data are as follows:

I. International boundaries or limits of sovereignty

01 Demarcated or delimited

02 Indefinite or in dispute

03 Other line of separation or sovereignty on land

II. Coastlines, islands, and lakes

01 Coastlines, islands and lakes that appear on all maps

02 Additional major islands and lakes

03 Intermediate islands and lakes

04 Minor islands and lakes

06 Intermittent major lakes

07 Intermittent minor lakes

08 Reefs

09 Major salt pans

10 Minor salt pans

13 Major ice shelves

14 Minor ice shelves

15 Glaciers

III. Rivers

01 Permanent major rivers

02 Permanent minor rivers

03 Additional rivers

04 Minor rivers

05 Double-lined rivers

06 Major Intermittent rivers

07 Additional Intermittent rivers

08 Minor Intermittent rivers

10 Major canals

11 Canals of lesser importance

12 1rrigation canals

IV. Internal boundaries

01 First order administrative

World DataBank II is available from the National Technical Information Center, which is part of the Commerce Department. A version of World DataBank II is available on Internet, as well. The Internet system maintains archives of programs and data that can be readily retrieved. The listing for the directory containing World DataBank II follows:

/usr/spool/ftp/tmp/Wor1dMap: 

Total 3041

· -rw-r-r-- 1 swo 3300000Jan 1300:40 Map.tar.Z.1

· -rw-r-r-- 1 swo 3300000 Jan 1300:40 Map.tar.Z.2

· -rw-r-r-- 1 swo 3045353 Jan 1300:41 Map.tar.Z.3

· -rw-r-r-- 1 swo 2705037 Jan 2323:16 Map_small.tar.Z r

· -rw-r-r-- 1 swo 1431 Jan 2323:21 README

You can retrieve the Map.tar.Z.1 file, for example, using the UNIX command below:

uucp -r uunet\!/usr/spool/ftp/tmp/WorldMap/Map.tar.Z.1 local_path in which local_path is the full pathname of the local file in which you wish to store the data. (I advise you to seek help locally if you are not experienced with Internet uucp usage.) Make sure you set aside enough space (and time) to download; the WorldMap directory contains nearly 12.4 megabytes of data. Also note that the data is in compressed binary form.  The usable uncompressed form is considerably larger.  The map database I used for my mapping routines came from Fred Fish disk #262. The three map files in the disk’s World Databank directory appear to be extracts of various resolutions from World DataBank II. The map files consist of short integer x and y values apparently obtained from a Miller projection followed by application of an aspect ratio correction factor (the documentation doesn’t say for sure). I transformed (by inverting the Miller transformation) the values in the files back to real latitude and longitude values for use with my mapping routines. The precision of each value is terrible of course, because the designers of this database used short integers for data storage to speed up their graphics plotting routines that are, incidentally, extremely fast.  The values I obtained from the Fish databases were sufficient, however, for demonstrating my map transformation equations. You may notice that Greenland seems to have been damaged somehow. It is flat on top and does not reach its proper latitude. The other continents, including Antarctica, seem to be fine. (It is possible that I am wrong about the original projection having been a Miller projection.) Each file also contains information regarding data type and segment numbers so that your program knows when to lift the pen and when to change colors to signify different types of map data.

PROGRAM LISTING

Geomap (in the Anderson drawer) shows the techniques we’ve discussed in action. For clarification, you will find extensive documentation regarding the graphics system calls on Fred Fish disk #322. You should be able to use most of the internal procedures, however, without knowing the details of the particular graphics system used here. I attempted to isolate the map-data handling procedures and transformations from the procedures involved with producing graphics input/ output.

CHANGE THE WORLD

This modest introduction to geographic mapping shows how you can use basic rotation matrices to simplify world mapping and where to find some map databases. This should be enough to let you embark upon your own geographic mapping project. There are many aspects of world mapping yet to be addressed, such as equations for the Van der Grinten projection and a way to simplify handling the eccentricity of the earth. The future shape of the world is now in your hands.

Howard C. Anderson is a member of the technical staff of the Technology Computer Aided Design group of Motorola’s Advanced Technology Center, which develops new processes for manufacturing semiconductor chips. He also is the author of the GWIN graphics system (found on Fred Fish disk #433) and sings tenor in a bluegrass band called BluegrAz Express. Contact him c/o The AmigaWorld Tech Journal, 80 Elm St., Peterborough, NH 03458.
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